(3x^2+2xy^2-2x)dx+(3y^2+2x^2y-2y)dy=0

Simple and best practice solution for (3x^2+2xy^2-2x)dx+(3y^2+2x^2y-2y)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2+2xy^2-2x)dx+(3y^2+2x^2y-2y)dy=0 equation:


Simplifying
(3x2 + 2xy2 + -2x) * dx + (3y2 + 2x2y + -2y) * dy = 0

Reorder the terms:
(-2x + 2xy2 + 3x2) * dx + (3y2 + 2x2y + -2y) * dy = 0

Reorder the terms for easier multiplication:
dx(-2x + 2xy2 + 3x2) + (3y2 + 2x2y + -2y) * dy = 0
(-2x * dx + 2xy2 * dx + 3x2 * dx) + (3y2 + 2x2y + -2y) * dy = 0
(-2dx2 + 2dx2y2 + 3dx3) + (3y2 + 2x2y + -2y) * dy = 0

Reorder the terms:
-2dx2 + 2dx2y2 + 3dx3 + (2x2y + -2y + 3y2) * dy = 0

Reorder the terms for easier multiplication:
-2dx2 + 2dx2y2 + 3dx3 + dy(2x2y + -2y + 3y2) = 0
-2dx2 + 2dx2y2 + 3dx3 + (2x2y * dy + -2y * dy + 3y2 * dy) = 0
-2dx2 + 2dx2y2 + 3dx3 + (2dx2y2 + -2dy2 + 3dy3) = 0

Reorder the terms:
-2dx2 + 2dx2y2 + 2dx2y2 + 3dx3 + -2dy2 + 3dy3 = 0

Combine like terms: 2dx2y2 + 2dx2y2 = 4dx2y2
-2dx2 + 4dx2y2 + 3dx3 + -2dy2 + 3dy3 = 0

Solving
-2dx2 + 4dx2y2 + 3dx3 + -2dy2 + 3dy3 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(-2x2 + 4x2y2 + 3x3 + -2y2 + 3y3) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(-2x2 + 4x2y2 + 3x3 + -2y2 + 3y3)' equal to zero and attempt to solve: Simplifying -2x2 + 4x2y2 + 3x3 + -2y2 + 3y3 = 0 Solving -2x2 + 4x2y2 + 3x3 + -2y2 + 3y3 = 0 Move all terms containing d to the left, all other terms to the right. Add '2x2' to each side of the equation. -2x2 + 4x2y2 + 3x3 + -2y2 + 2x2 + 3y3 = 0 + 2x2 Reorder the terms: -2x2 + 2x2 + 4x2y2 + 3x3 + -2y2 + 3y3 = 0 + 2x2 Combine like terms: -2x2 + 2x2 = 0 0 + 4x2y2 + 3x3 + -2y2 + 3y3 = 0 + 2x2 4x2y2 + 3x3 + -2y2 + 3y3 = 0 + 2x2 Remove the zero: 4x2y2 + 3x3 + -2y2 + 3y3 = 2x2 Add '-4x2y2' to each side of the equation. 4x2y2 + 3x3 + -2y2 + -4x2y2 + 3y3 = 2x2 + -4x2y2 Reorder the terms: 4x2y2 + -4x2y2 + 3x3 + -2y2 + 3y3 = 2x2 + -4x2y2 Combine like terms: 4x2y2 + -4x2y2 = 0 0 + 3x3 + -2y2 + 3y3 = 2x2 + -4x2y2 3x3 + -2y2 + 3y3 = 2x2 + -4x2y2 Add '-3x3' to each side of the equation. 3x3 + -2y2 + -3x3 + 3y3 = 2x2 + -4x2y2 + -3x3 Reorder the terms: 3x3 + -3x3 + -2y2 + 3y3 = 2x2 + -4x2y2 + -3x3 Combine like terms: 3x3 + -3x3 = 0 0 + -2y2 + 3y3 = 2x2 + -4x2y2 + -3x3 -2y2 + 3y3 = 2x2 + -4x2y2 + -3x3 Add '2y2' to each side of the equation. -2y2 + 2y2 + 3y3 = 2x2 + -4x2y2 + -3x3 + 2y2 Combine like terms: -2y2 + 2y2 = 0 0 + 3y3 = 2x2 + -4x2y2 + -3x3 + 2y2 3y3 = 2x2 + -4x2y2 + -3x3 + 2y2 Add '-3y3' to each side of the equation. 3y3 + -3y3 = 2x2 + -4x2y2 + -3x3 + 2y2 + -3y3 Combine like terms: 3y3 + -3y3 = 0 0 = 2x2 + -4x2y2 + -3x3 + 2y2 + -3y3 Simplifying 0 = 2x2 + -4x2y2 + -3x3 + 2y2 + -3y3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| 9(m+2)=.6(m+7) | | 13x+y-67=0 | | -2x-4=-x | | x+x+9-11=14 | | (y-(-57))=-3(x-(-18)) | | x+x+x-11=14 | | (3x^2+2xy^2-2x)dx+(3y^2+2y^2-2y)dy=0 | | 6y-32=-1 | | M=2p-1 | | 5(2x+4)=23 | | -3+2b=3 | | 3x-2=3x-14 | | 5x+78x=39x+23 | | X-120=8x | | w=76+19 | | 7a^3=7a | | 105=9x+15 | | 5x+15=6x+7 | | 3(19m+9)=34m | | x^3-6x^2-13x+43=0 | | x-1/2=32 | | 5/6x-7 | | (2y+3)(y+3)=-4(2y+3) | | 4.2-2.2=2.1x | | 6y-2x=14 | | 5.2-2.7=3.5x | | x^2-6x+9=4x^2+8x+1 | | F(x)=5/6x-7 | | 3+3n=-6 | | 24=1/2(3B^2) | | 3[x-2(x+5)]=2-(x+5)+5 | | 2x^2+2y^2+6x+6y-41=0 |

Equations solver categories